雷火电竞-中国电竞赛事及体育赛事平台

歡迎來到入門教程網(wǎng)!

Java編程

當(dāng)前位置:主頁 > 軟件編程 > Java編程 >

Java編程實現(xiàn)深度優(yōu)先遍歷與連通分量代碼示例

來源:本站原創(chuàng)|時間:2020-01-10|欄目:Java編程|點擊:

深度優(yōu)先遍歷

深度優(yōu)先遍歷類似于一個人走迷宮:

如圖所示,從起點開始選擇一條邊走到下一個頂點,沒到一個頂點便標(biāo)記此頂點已到達。

當(dāng)來到一個標(biāo)記過的頂點時回退到上一個頂點,再選擇一條沒有到達過的頂點。

當(dāng)回退到的路口已沒有可走的通道時繼續(xù)回退。

連通分量,看概念:無向圖G的極大連通子圖稱為G的連通分量( Connected Component)。任何連通圖的連通分量只有一個,即是其自身,非連通的無向圖有多個連通分量。

下面看看具體實例:

package com.dataStructure.graph;
// 求無權(quán)圖的聯(lián)通分量
public class Components {
	private Graph graph;
	// 存放輸入的數(shù)組
	private Boolean[] visited;
	// 存放節(jié)點被訪問狀態(tài)
	private int componentCount;
	// 連通分量的數(shù)量
	private int[] mark;
	// 存儲節(jié)點所屬聯(lián)通分量的標(biāo)記
	// 構(gòu)造函數(shù),初始化私有屬性
	public Components(Graph graph) {
		this.graph = graph;
		componentCount = 0;
		// 連通分量初始數(shù)量為 0
		visited = new Boolean[graph.V()];
		mark = new int[graph.V()];
		for (int i = 0; i < graph.V(); i++) {
			visited[i] = false;
			// 節(jié)點初始訪問狀態(tài)為 false
			mark[i] = -1;
			// 節(jié)點初始連通分量標(biāo)記為 -1
		}
		for (int i = 0; i < graph.V(); i++) {
			// 對于未被訪問的節(jié)點進行 dfs深度優(yōu)先遍歷
			if (!visited[i]) {
				dfs(i);
				componentCount++;
				// 對一個節(jié)點進行dfs 到底后,一個連通分量結(jié)束,數(shù)量+1
			}
		}
	}
	private void dfs(int i) {
		visited[i] = true;
		// 節(jié)點 i 已被訪問
		mark[i] = componentCount;
		// 節(jié)點 i 屬于當(dāng)前連通分量的數(shù)量(標(biāo)記)
		for (int node : graph.adjacentNode(i)) {
			// 遍歷圖中節(jié)點 i 的鄰接節(jié)點
			if (!visited[node]) // 對未被訪問的鄰接節(jié)點進行 dfs
			dfs(node);
		}
	}
	public Boolean isConnected(int v, int w) {
		return mark[v] == mark[w];
		// 根據(jù)兩節(jié)點所屬連通分量的標(biāo)記判斷兩節(jié)點是否相連
	}
	public int getComponentCount() {
		return componentCount;
		// 返回 graph 中連通分量的數(shù)量
	}
}
//public class Components {
//
//  private Graph G;          // 圖的引用
//  private boolean[] visited; // 記錄dfs的過程中節(jié)點是否被訪問
//  private int ccount;     // 記錄聯(lián)通分量個數(shù)
//  private int[] id;      // 每個節(jié)點所對應(yīng)的聯(lián)通分量標(biāo)記
//
//  // 圖的深度優(yōu)先遍歷
//  private void dfs(int v) {
//
//    visited[v] = true; // 節(jié)點 v 的訪問狀態(tài)置為 true
//    id[v] = ccount; // 節(jié)點 v 對應(yīng)的聯(lián)通標(biāo)記設(shè)置為 ccount
//
//    // 遍歷節(jié)點 v 的鄰接點 i
//    for (int i : G.adjacentNode(v)) {
//      // 如果鄰接點 i 尚未被訪問
//      if (!visited[i])
//        // 對鄰接點 i 進行深度優(yōu)先遍歷
//        dfs(i);
//    }
//  }
//
//  // 構(gòu)造函數(shù), 求出無權(quán)圖的聯(lián)通分量
//  public Components(Graph graph) {
//
//    // 算法初始化
//    G = graph;
//
//    // visited 數(shù)組存儲 圖G 中 節(jié)點的被訪問狀態(tài)
//    visited = new boolean[G.V()];
//
//    // id 數(shù)組存儲 圖G 中 節(jié)點所屬連通分量的標(biāo)記
//    id = new int[G.V()];
//
//    // 連通分量數(shù)量初始化為 0
//    ccount = 0;
//
//    // 將 visited 數(shù)組全部置為 false; id 數(shù)組全部置為 -1
//    for (int i = 0; i < G.V(); i++) {
//      visited[i] = false;
//      id[i] = -1;
//    }
//
//    // 求圖的聯(lián)通分量
//    for (int i = 0; i < G.V(); i++)
//      // 訪問一個未曾被訪問的節(jié)點
//      if (!visited[i]) {
//        // 對其進行深度優(yōu)先遍歷
//        dfs(i);
//        ccount++;
//      }
//  }
//
//  // 返回圖的聯(lián)通分量個數(shù)
//  int count() {
//    return ccount;
//  }
//
//  // 查詢點v和點w是否聯(lián)通(節(jié)點v 和 w 的聯(lián)通分量的標(biāo)記是否相同
//  boolean isConnected(int v, int w) {
//    assert v >= 0 && v < G.V();
//    assert w >= 0 && w < G.V();
//    return id[v] == id[w];
//  }
//}

通分量數(shù)量為 3

總結(jié)

以上就是本文關(guān)于Java編程實現(xiàn)深度優(yōu)先遍歷與連通分量代碼示例的全部內(nèi)容,希望對大家有所幫助。如有不足之處,歡迎留言指出。關(guān)注我們,您會有更多收獲。

上一篇:Java編程實現(xiàn)五子棋人人對戰(zhàn)代碼示例

欄    目:Java編程

下一篇:Java編程實現(xiàn)swing圓形按鈕實例代碼

本文標(biāo)題:Java編程實現(xiàn)深度優(yōu)先遍歷與連通分量代碼示例

本文地址:http://www.jygsgssxh.com/a1/Javabiancheng/8403.html

網(wǎng)頁制作CMS教程網(wǎng)絡(luò)編程軟件編程腳本語言數(shù)據(jù)庫服務(wù)器

如果侵犯了您的權(quán)利,請與我們聯(lián)系,我們將在24小時內(nèi)進行處理、任何非本站因素導(dǎo)致的法律后果,本站均不負(fù)任何責(zé)任。

聯(lián)系QQ:835971066 | 郵箱:835971066#qq.com(#換成@)

Copyright © 2002-2020 腳本教程網(wǎng) 版權(quán)所有