C++實(shí)現(xiàn)二叉樹基本操作詳解
樹是一種重要的非線性數(shù)據(jù)結(jié)構(gòu),二叉樹是樹型結(jié)構(gòu)的一種重要類型。本學(xué)年論文介紹了二叉樹的定義,二叉樹的存儲(chǔ)結(jié)構(gòu),二叉樹的相關(guān)術(shù)語,以此引入二叉樹這一概念,為展開二叉樹的基本操作做好理論鋪墊。二叉樹的基本操作主要包含以下幾個(gè)模塊:二叉樹的遍歷方法,計(jì)算二叉樹的結(jié)點(diǎn)個(gè)數(shù),計(jì)算二叉樹的葉子結(jié)點(diǎn)個(gè)數(shù),二叉樹深度的求解等內(nèi)容。
前序遍歷(遞歸&非遞歸)
- 訪問根節(jié)點(diǎn)
- 前序訪問左子樹
- 前序訪問右子樹
//前序非遞歸
void PrevOrder()
{
stack<Node*> s;
Node *cur = _root;
while (cur || !s.empty())
{
while (cur)
{
cout << cur->_data << " ";
s.push(cur);
cur = cur->_left;
}
//此時(shí)當(dāng)前節(jié)點(diǎn)的左子樹已遍歷完畢
Node *tmp = s.top();
s.pop();
cur = tmp->_right;
}
cout << endl;
}
//前序遞歸
void PrevOrderR()
{
_PrevOrder(_root);
cout << endl;
}
void _PrevOrder(Node *root)
{
if (root == NULL) //必須有遞歸出口?。?!
return;
cout << root->_data << " ";
_PrevOrder(root->_left);
_PrevOrder(root->_right);
}
中序遍歷(遞歸&非遞歸)
- 中序訪問左子樹
- 訪問根節(jié)點(diǎn)
- 中序訪問右子樹
//中序非遞歸
void InOrder()
{
stack<Node*> s;
Node *cur = _root;
while (cur || !s.empty())
{
while (cur)
{
s.push(cur);
cur = cur->_left;
}
//此時(shí)當(dāng)前節(jié)點(diǎn)的左子樹已遍歷完畢
Node *tmp = s.top();
cout << tmp->_data << " ";
s.pop();
cur = tmp->_right;
}
cout << endl;
}
//中序遞歸
void InOrderR()
{
_InOrder(_root);
cout << endl;
}
void _InOrder(Node *root)
{
if (root == NULL)
return;
_InOrder(root->_left);
cout << root->_data << " ";
_InOrder(root->_right);
}
后序遍歷(遞歸&非遞歸)
//后序非遞歸
//后序遍歷可能會(huì)出現(xiàn)死循環(huán),所以要記錄下前一個(gè)訪問的節(jié)點(diǎn)
void PostOrder()
{
stack<Node*> s;
Node *cur = _root;
Node *prev = NULL;
while (cur || !s.empty())
{
while (cur)
{
s.push(cur);
cur = cur->_left;
}
Node *tmp = s.top();
if (tmp->_right && tmp->_right != prev)
{
cur = tmp->_right;
}
else
{
cout << tmp->_data << " ";
prev = tmp;
s.pop();
}
}
cout << endl;
}
//后序遞歸
void PostOrderR()
{
_PostOrder(_root);
cout << endl;
}
void _PostOrder(Node *root)
{
if (root == NULL)
return;
_PostOrder(root->_left);
_PostOrder(root->_right);
cout << root->_data << " ";
}
層序遍歷
從根節(jié)點(diǎn)開始,依次訪問每層結(jié)點(diǎn)。
利用隊(duì)列先進(jìn)先出的特性,把每層結(jié)點(diǎn)從左至右依次放入隊(duì)列。
void LevelOrder() //利用隊(duì)列?。?!
{
queue<Node*> q;
Node *front = NULL;
//1.push根節(jié)點(diǎn)
if (_root)
{
q.push(_root);
}
//2.遍歷當(dāng)前節(jié)點(diǎn),push當(dāng)前節(jié)點(diǎn)的左右孩子,pop當(dāng)前節(jié)點(diǎn)
//3.遍歷當(dāng)前節(jié)點(diǎn)的左孩子,再遍歷右孩子,循環(huán)直至隊(duì)列為空
while (!q.empty())
{
front = q.front();
cout << front->_data << " ";
if (front->_left)
q.push(front->_left);
if (front->_right)
q.push(front->_right);
q.pop();
}
cout << endl;
}
求二叉樹的高度
size_t Depth()
{
return _Depth(_root);
}
size_t _Depth(Node *root)
{
if (root == NULL)
return 0;
else if (root->_left == NULL && root->_right == NULL)
return 1;
else
{
size_t leftDepth = _Depth(root->_left) + 1;
size_t rightDepth = _Depth(root->_right) + 1;
return leftDepth > rightDepth ? leftDepth : rightDepth;
}
}
求葉子節(jié)點(diǎn)的個(gè)數(shù)
size_t LeafSize()
{
return _LeafSize(_root);
}
size_t _LeafSize(Node *root)
{
if (root == NULL)
return 0;
else if (root->_left == NULL && root->_right == NULL)
return 1;
else
return _LeafSize(root->_left) + _LeafSize(root->_right);
}
求二叉樹第k層的節(jié)點(diǎn)個(gè)數(shù)
size_t GetKLevel(int k)
{
return _GetKLevel(_root, k);
}
size_t _GetKLevel(Node *root, int k)
{
if (root == NULL)
return 0;
else if (k == 1)
return 1;
else
return _GetKLevel(root->_left, k - 1) + _GetKLevel(root->_right, k - 1);
}
完整代碼如下:
template<class T>
struct BinaryTreeNode
{
T _data;
BinaryTreeNode *_left;
BinaryTreeNode *_right;
BinaryTreeNode(const T& d)
:_data(d)
, _left(NULL)
, _right(NULL)
{}
};
template<class T>
class BinaryTree
{
public:
typedef BinaryTreeNode<T> Node;
BinaryTree()
:_root(NULL)
{}
BinaryTree(T *arr, size_t n, const T& invalid)
{
size_t index = 0;
_root = _CreateBinaryTree(arr, n, invalid, index);
}
BinaryTree(const BinaryTree<T>& t)
:_root(NULL)
{
_root = _CopyTree(t._root);
}
BinaryTree<T>& operator=(const BinaryTree<T>& t)
{
if (this != t)
{
Node *tmp = new Node(t._root);
if (tmp != NULL)
{
delete _root;
_root = tmp;
}
}
return *this;
}
~BinaryTree()
{
_DestroyTree(_root);
cout << endl;
}
//前序非遞歸
void PrevOrder()
{
stack<Node*> s;
Node *cur = _root;
while (cur || !s.empty())
{
while (cur)
{
cout << cur->_data << " ";
s.push(cur);
cur = cur->_left;
}
//此時(shí)當(dāng)前節(jié)點(diǎn)的左子樹已遍歷完畢
Node *tmp = s.top();
s.pop();
cur = tmp->_right;
}
cout << endl;
}
//前序遞歸
void PrevOrderR()
{
_PrevOrder(_root);
cout << endl;
}
//中序非遞歸
void InOrder()
{
stack<Node*> s;
Node *cur = _root;
while (cur || !s.empty())
{
while (cur)
{
s.push(cur);
cur = cur->_left;
}
//此時(shí)當(dāng)前節(jié)點(diǎn)的左子樹已遍歷完畢
Node *tmp = s.top();
cout << tmp->_data << " ";
s.pop();
cur = tmp->_right;
}
cout << endl;
}
//中序遞歸
void InOrderR()
{
_InOrder(_root);
cout << endl;
}
//后序非遞歸
//后序遍歷可能會(huì)出現(xiàn)死循環(huán),所以要記錄下前一個(gè)訪問的節(jié)點(diǎn)
void PostOrder()
{
stack<Node*> s;
Node *cur = _root;
Node *prev = NULL;
while (cur || !s.empty())
{
while (cur)
{
s.push(cur);
cur = cur->_left;
}
Node *tmp = s.top();
if (tmp->_right && tmp->_right != prev)
{
cur = tmp->_right;
}
else
{
cout << tmp->_data << " ";
prev = tmp;
s.pop();
}
}
cout << endl;
}
//后序遞歸
void PostOrderR()
{
_PostOrder(_root);
cout << endl;
}
void LevelOrder() //利用隊(duì)列?。。?
{
queue<Node*> q;
Node *front = NULL;
//1.push根節(jié)點(diǎn)
if (_root)
{
q.push(_root);
}
//2.遍歷當(dāng)前節(jié)點(diǎn),push當(dāng)前節(jié)點(diǎn)的左右孩子,pop當(dāng)前節(jié)點(diǎn)
//3.遍歷當(dāng)前節(jié)點(diǎn)的左孩子,再遍歷右孩子,循環(huán)直至隊(duì)列為空
while (!q.empty())
{
front = q.front();
cout << front->_data << " ";
if (front->_left)
q.push(front->_left);
if (front->_right)
q.push(front->_right);
q.pop();
}
cout << endl;
}
size_t Size()
{
return _Size(_root);
}
size_t LeafSize()
{
return _LeafSize(_root);
}
size_t GetKLevel(int k)
{
return _GetKLevel(_root, k);
}
size_t Depth()
{
return _Depth(_root);
}
Node* Find(const T& d)
{
return _Find(_root, d);
}
protected:
Node* _CreateBinaryTree(T *arr, size_t n, const T& invalid, size_t& index)
{
Node *root = NULL;
if (index < n && arr[index] != invalid)
{
root = new Node(arr[index]);
index++;
root->_left = _CreateBinaryTree(arr, n, invalid, index);
index++;
root->_right = _CreateBinaryTree(arr, n, invalid, index);
}
return root;
}
Node* _CopyTree(Node *root)
{
Node *newRoot = NULL;
if (root)
{
newRoot = new Node(root->_data);
newRoot->_left = _CopyTree(root->_left);
newRoot->_right = _CopyTree(root->_right);
}
return newRoot;
}
void _DestroyTree(Node *root)
{
if (root)
{
_Destroy(root->_left);
_Destroy(root->_right);
delete root;
}
}
void _PrevOrder(Node *root)
{
if (root == NULL) //必須有遞歸出口?。?!
return;
cout << root->_data << " ";
_PrevOrder(root->_left);
_PrevOrder(root->_right);
}
void _InOrder(Node *root)
{
if (root == NULL)
return;
_InOrder(root->_left);
cout << root->_data << " ";
_InOrder(root->_right);
}
void _PostOrder(Node *root)
{
if (root == NULL)
return;
_PostOrder(root->_left);
_PostOrder(root->_right);
cout << root->_data << " ";
}
size_t _Size(Node *root)
{
if (root == NULL)
return 0;
else
return _Size(root->_left) + _Size(root->_right) + 1;
}
size_t _LeafSize(Node *root)
{
if (root == NULL)
return 0;
else if (root->_left == NULL && root->_right == NULL)
return 1;
else
return _LeafSize(root->_left) + _LeafSize(root->_right);
}
size_t _GetKLevel(Node *root, int k)
{
if (root == NULL)
return 0;
else if (k == 1)
return 1;
else
return _GetKLevel(root->_left, k - 1) + _GetKLevel(root->_right, k - 1);
}
size_t _Depth(Node *root)
{
if (root == NULL)
return 0;
else if (root->_left == NULL && root->_right == NULL)
return 1;
else
{
size_t leftDepth = _Depth(root->_left) + 1;
size_t rightDepth = _Depth(root->_right) + 1;
return leftDepth > rightDepth ? leftDepth : rightDepth;
}
}
Node* _Find(Node *root, const T& d)
{
if (root == NULL)
return NULL;
else if (root->_data == d)
return root;
else if (Node *ret = _Find(root->_left, d))
return ret;
else
_Find(root->_right, d);
}
protected:
Node *_root;
};
以上就是本文的全部內(nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持我們。
上一篇:利用C語言實(shí)現(xiàn)“百馬百擔(dān)”問題方法示例
欄 目:C語言
下一篇:C/C++中一次性執(zhí)行多個(gè)DOS命令的實(shí)現(xiàn)思路
本文標(biāo)題:C++實(shí)現(xiàn)二叉樹基本操作詳解
本文地址:http://www.jygsgssxh.com/a1/Cyuyan/1019.html
您可能感興趣的文章
- 04-02c語言沒有round函數(shù) round c語言
- 01-10深入二叉樹兩個(gè)結(jié)點(diǎn)的最低共同父結(jié)點(diǎn)的詳解
- 01-10數(shù)據(jù)結(jié)構(gòu)課程設(shè)計(jì)-用棧實(shí)現(xiàn)表達(dá)式求值的方法詳解
- 01-10使用OpenGL實(shí)現(xiàn)3D立體顯示的程序代碼
- 01-10深入理解C++中常見的關(guān)鍵字含義
- 01-10求斐波那契(Fibonacci)數(shù)列通項(xiàng)的七種實(shí)現(xiàn)方法
- 01-10C語言 解決不用+、-、&#215;、&#247;數(shù)字運(yùn)算符做加法
- 01-10使用C++實(shí)現(xiàn)全排列算法的方法詳解
- 01-10c++中inline的用法分析
- 01-10深入理解二叉樹的非遞歸遍歷


閱讀排行
本欄相關(guān)
- 04-02c語言函數(shù)調(diào)用后清空內(nèi)存 c語言調(diào)用
- 04-02func函數(shù)+在C語言 func函數(shù)在c語言中
- 04-02c語言的正則匹配函數(shù) c語言正則表達(dá)
- 04-02c語言用函數(shù)寫分段 用c語言表示分段
- 04-02c語言中對(duì)數(shù)函數(shù)的表達(dá)式 c語言中對(duì)
- 04-02c語言編寫函數(shù)冒泡排序 c語言冒泡排
- 04-02c語言沒有round函數(shù) round c語言
- 04-02c語言分段函數(shù)怎么求 用c語言求分段
- 04-02C語言中怎么打出三角函數(shù) c語言中怎
- 04-02c語言調(diào)用函數(shù)求fibo C語言調(diào)用函數(shù)求
隨機(jī)閱讀
- 01-11ajax實(shí)現(xiàn)頁面的局部加載
- 01-10delphi制作wav文件的方法
- 08-05dedecms(織夢(mèng))副欄目數(shù)量限制代碼修改
- 01-10C#中split用法實(shí)例總結(jié)
- 08-05DEDE織夢(mèng)data目錄下的sessions文件夾有什
- 08-05織夢(mèng)dedecms什么時(shí)候用欄目交叉功能?
- 04-02jquery與jsp,用jquery
- 01-10使用C語言求解撲克牌的順子及n個(gè)骰子
- 01-10SublimeText編譯C開發(fā)環(huán)境設(shè)置
- 01-11Mac OSX 打開原生自帶讀寫NTFS功能(圖文


